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Abstract

The current two-step VP7 and VP4 genotyping RT-PCR assays for rotaviruses have been linked 

consistently to genotyping failure in an estimated 30% of RVA positive samples worldwide. We 

have developed a VP7 and VP4 multiplexed one-step genotyping assays using updated primers 

generated from contemporary VP7 and VP4 sequences. To determine assay specificity and 

sensitivity, 17 reference virus strains, 6 non-target gastroenteritis viruses and 725 clinical samples 

carrying the most common VP7 (G1, G2, G3, G4, G9, and G12) and VP4 (P[4], P[6], P[8], P[9] 

and P[10]) genotypes were tested in this study. All reference RVA strain targets yielded amplicons 

of the expected sizes and non-target genotypes and gastroenteritis viruses were not detected by 

either assay. Out of the 725 clinical samples tested, the VP7 and VP4 assays were able to assigned 

specific genotypes to 711 (98.1%) and 714 (98.5%), respectively. The remaining unassigned 

samples were re-tested for RVA antigen using EIA and qRT-PCR assays and all were found to be 

negative. The overall specificity, sensitivity and limit of detection of the VP7 assay were in the 

ranges of 99.0–100%, 94.0–100% and 8.6 × 101 to 8.6 × 102 copies of RNA/reaction, respectively. 

For the VP4 assay, the overall specificity, sensitivity and limit of detection assay were in the 

ranges of 100%, 94.0–100% and ≤1 to 8.6 × 102 copies of RNA/reaction, respectively. Here we 

report two highly robust, accurate, efficient, affordable and documentable gel-based genotyping 

systems which are capable of genotyping 97.8% of the six common VP7 and 98.3% of the five 

common VP4 genotypes of RVA strains which are responsible for approximately 88.2% of all 

RVA infections worldwide.
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1. Introduction

Group A rotaviruses (RVA) are important pathogens that cause severe diarrheal disease in 

children less than five years of age, leading to severe dehydration and often death (Estes and 

Kapikian, 2007; Parashar et al., 2009). Recent reports revealed an estimated 453,000 

preventable pediatric fatalities in low-income countries of Africa and Asia attributable to 

RVA (Tate et al., 2012). In industrialized nations, RVA infection rarely results in death, but 

remains the most common cause of hospitalizations for acute gastroenteritis in children and 

leads to major medical and societal costs. For example, in the United States alone, 

approximately 50,000 children are hospitalized and nearly one billion US dollars in societal 

costs can be attributed to RVA infections annually (Parashar et al., 1998; Payne et al., 2011).

RVA are members of the Reoviridae family and exist as non-enveloped, triple-layered 

icosahedral capsids surrounding an eleven-segmented, double stranded RNA (dsRNA) 

genome (Estes and Kapikian, 2007). The viral genome encodes for six structural proteins 

(VP1-VP4, VP6 and VP7) and five or six non-structural proteins (NSP1-NSP5/NSP6) (Estes 

and Kapikian, 2007). Encompassing the dsRNA are 3 protein layers, a central core (VP2), an 

inner protein layer (VP6), and an outer layer comprised of VP7 and VP4 proteins (Estes and 

Kapikian, 2007). The traditional binomial classification of RVA is based upon serotype/

genotype specificities and the sequence diversity of the 2 outer proteins, VP7 (glycosylated, 

G-type) and VP4 (protease-sensitive, P-type) (Estes, 1996). These two outer capsid proteins, 

VP7 and VP4, contain multiple antigenic epitopes that can induce the production of 

neutralizing antibodies, which are a primary target for vaccine development (Estes, 1996; 

Estes and Kapikian, 2007). To date, at least 27 G- and 37 P-genotypes have been recognized 

and approximately 73 G/P genotype constellations of RVAs infecting humans have been 

reported (Matthijnssens et al., 2009, 2011; Trojnar et al., 2013). Of all possible combinations 

of RVA, 6 genotypes (G1P[8], G2P[4], G3P[8], G4P[8], G9P[8], and to a lesser but 

increasing extent G12P[8], are currently the most important genotypes in humans worldwide 

and are associated with an estimated 80–90% of the RVA disease burden (Banyai et al., 

2012; Iturriza-Gomara et al., 2011; Matthijnssens et al., 2009, 2010).

Currently, routine characterization of RVA into G- and P-genotypes in human stool and 

environmental samples is performed by molecular methods (Das et al., 1994; DiStefano et 

al., 2005; Gentsch et al., 1992; Gouvea et al., 1990; Iturriza-Gomara et al., 2004; Simmonds 

et al., 2008). Immunoassay characterization using monoclonal or polyclonal antibodies 

(Beards et al., 1984; Coulson et al., 1987; Taniguchi et al., 1987; Ward et al., 1991) is used 

rarely today. In the last two and a half decades, at least four conventional two-step 

multiplexed RT-PCR strategies for RVA G-typing (Das et al., 1994; Gouvea et al., 1990; 

Iturriza-Gomara et al., 2004; Taniguchi et al., 1992) and two for P-typing (Gentsch et al., 

1992; Simmonds et al., 2008) have been developed and used widely. In addition, the use of 

assays such as restriction fragment length polymorphism analysis (Iturriza Gomara et al., 

2002), sequence based analysis (Barman et al., 2004; DiStefano et al., 2005), multiplexed 

capture and type-specific primer extension (Lovmar et al., 2003), and hybridization to 

oligonucleotide probes (Santos et al., 2008; van Doorn et al., 2009) for RVA genotyping 

have been described. These genotyping assays have been invaluable in defining the 

importance of individual RVA G and P-types. They have been used to genotype 
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approximately 110,000 strains, and also have highlighted RVA genetic diversity (Bányai et 

al., 2012; Gentsch et al., 2005; Matthijnssens et al., 2009; Seheri et al., 2014). On a global 

level, however, recent issues with the effectiveness of these typing assays have been 

identified. First, as a result of genetic drift, genotype-specific PCR primers have increasingly 

failed to amplify the VP7 and VP4 genes of globally common strains, including those of the 

most common strain G1P[8] (Adah et al., 1997; Banyai et al., 2005; Cunliffe et al., 2001; 

Iturriza-Gomara et al., 2000; Parra and Espinola, 2006). Secondly, increasing numbers of 

studies have reported detection of novel human RVA G and P types, for example G12 and 

P[14], which are not typeable because genotype-specific primers are absent from the 

multiplexed primer mixtures (Banyai et al., 2003, 2004; Cooney et al., 2001; Iturriza 

Gomara et al., 2004; Rahman et al., 2005; Santos et al., 1998; Solberg et al., 2009). Finally, 

these RT-PCR assays occasionally mis-classify strains due to cross-priming of one 

genotype-specific primer to another genotype (Aladin et al., 2010; Esona et al., 2010b; Mitui 

et al., 2012).

Currently, two live-attenuated oral RVA vaccines, Rotarix (GlaxoSmithKline Biologicals, 

Belgium) and RotaTeq (Merck & Co., Inc., United States), have been licensed in more than 

100 countries and are being introduced into routine immunization programs in the United 

States and other countries in Latin America, Europe, Africa and Asia (Armah et al., 2010; 

Benhafid et al., 2012; Cunliffe et al., 2012; Madhi et al., 2012; Ruiz-Palacios et al., 2006; 

Seheri et al., 2012; Vesikari et al., 2007a,b). Countries considering using these vaccines to 

reduce RVA disease have introduced strain surveillance programs to provide strain 

prevalence data in the pre-vaccine era and to judge the impact of the vaccine after 

introduction. When these new vaccines become widely used, surveillance will be important 

to determine if some strains escape immunity induced by the vaccines, whether rare strains 

emerge and if vaccine strains reassort in humans or circulate in children. This has raised the 

need for a robust, accurate, efficient, affordable and documentable typing system. The gel-

based multiplexed one-step RT-PCR protocol developed here has all the above-mentioned 

characteristics. First, the gel-based RT-PCR is low cost or affordable and does not require 

specialized equipment and highly-trained laboratory personnel. Secondly, the one-step RT-

PCR approach developed and validated in this study involves fewer manipulation steps to 

obtain RVA genotype data compared to previously-developed genotyping assays, thus 

reducing chances of cross-contamination. Previously described RT-PCR plus hemi-nested 

PCR assays are prone to cross-contamination because of the greater number of manipulation 

steps involved and innate proclivity of hemi-nested PCR to produce spurious bands. Thirdly, 

these assays use primers designed from contemporary VP4 and VP7 sequences. Therefore 

with the above-mentioned advantages, these one-step RT-PCR assays will be more beneficial 

in the developing countries, and especially in those countries with few trained personnel and 

limited laboratory space. Hence, the primary aim of the study is to develop and validate 

novel RVA VP7 and VP4 genotyping assays, using a multiplexed one-step Reverse 

transcriptase-PCR protocol with updated primers that specifically detects the most common 

RVA G-genotypes (G1, G2, G3, G4, G9 and G12) and P-genotypes (P[4], P[6], P[8], P[9] 

and P[10]) in human stool.
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2. Materials and methods

2.1. Ethics statement

For domestic surveillance samples, institutional review board approvals were obtained from 

the CDC and from individual study sites. All clinical samples tested in this study were de-

identified so they could not be linked back to cases.

2.2. Test samples

2.2.1. Reference strains—For reference RVA VP7 and VP4 genotypes, seventeen 

reference laboratory strains propagated in MA104 cells were used: Wa (G1P[8]), DS-1 

(G2P[4]), P (G3P[8]), ST3 (G4P[6]), 116E (G9P[11]), US1205 (G9P[6]), WI61 (G9P[8]), 

L26 (G12P[4]), 1076 (G2P[6]), AU-1 (G3P[9]), 69M (G8P[10]), RRV (G3P[3]), SA11 

(G3P[2]), CC425 (G3P[9]), RO1845 (G3P[9]), WC3 (G6P[5]) and OSU (G5P[7]).

2.2.2. Clinical samples—A total of 725 clinical stool samples, consisting of 658 

rotavirus EIA positives with known VP7 and VP4 genotypes and 67 rotavirus EIA negatives 

were included in this study. The VP7 and VP4 genotypes were previously determined by 

using two-step G and P genotyping assays (Das et al., 1994; Gentsch et al., 1992) and 644 

were confirmed by sequencing. The samples consisted of VP7 genotypes G1 (100); G2 

(145); G3 (78); G4 (24); G9 (70); and G12 (228); and VP4 genotypes P[8] (460); P[4] (131); 

P[6] (50); P[9] (2); and P[10] (2). Samples with known RVA mixed G and P types (n = 13) 

were also included. All clinical stool samples were obtained from routine domestic and 

international RVA surveillance conducted by CDC. RotaTeq vaccine components and 

accession numbers (G1, GU565057; G2, GU565068; G3, GU565079; G4, GU565090; G6, 

GU565046 and P[5], GU565055; P[8], GU565044) and Rotarix vaccine components and 

accession number (G1, JX943614 and P[8], JX943612) were also analyzed.

2.2.3. Non-RVA target—A total of six non-RVA targets including rotavirus group B 

(RVB), rotavirus group C (RVC), adenovirus (types 40 and 41) and norovirus (genotypes GI.

3b and GII.4) were also analyzed.

2.3. RNA extraction of test samples

RNA from 17 reference virus strains, 725 clinical samples and non-RVA targets were 

extracted using the MagMax Viral RNA Isolation kit (Life Technologies, New York, NY) on 

the automated KingFisher extraction platform (Thermo Electron Corporation, Vantaa, 

Finland), the MagNA Pure Compact RNA Isolation Kit on the automated MagNA Pure 

Compact Instrument (Roche Applied Science, Indianapolis, IN, USA) and the Viral NA 

Large Volume Kit II on the automated MagNA Pure 96 instruments (Roche Applied 

Science, Indianapolis, IN) according to manufacturer’s instructions. All extracted nucleic 

acids were stored at −80 °C until analyzed.

2.4. Primer design

To generate a consensus sequences for the most common RVA VP7 genotypes (G1, G2, G3, 

G4, G9 and G12) and VP4 genotypes (P[4], P[6], P[8], P[9] and P[10]), a total of 1800 gene 

sequences with known lineages and sub-lineages and years of isolation/detection/submission 
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from 1983 to 2012 were obtained from the GenBank database. Four hundred of these 

sequences were representatives of known lineages and sub-lineages of the five common VP4 

genotypes (Donato et al., 2012; Magagula et al., 2014; Nakagomi et al., 2012; Nyaga et al., 

2014), while 1400 were representatives of known lineages and sub-lineages of the six 

common VP7 genotypes (Donato et al., 2012; Esona et al., 2013; Magagula et al., 2014; 

Nakagomi et al., 2012; Nyaga et al., 2014; Stupka et al., 2009, 2012). The consensus 

sequences obtained from multiple alignments of the six most common RVA VP7 genotypes 

(G1, G2, G3, G4, G9 and G12) and five most common VP4 genotypes (P[4], P[6], P[8], P[9] 

and P[10]) were used to design oligonucleotide primers for specificVP7 and VP4 genotypes, 

respectively. Because the sequences of strains with VP4 P[9] and P[10] genotypes from 

GenBank were very conserved, the P[9] and P[10] antisense primers previously described 

(Gentsch et al., 1992) were incorporated into the VP4 genotyping assay. Candidate VP7 and 

VP4 universal forward primers and multiple primer sets of VP7 and VP4 genotype-specific 

reverse primers were designed manually. Degenerate bases were introduced into the primer 

sequences to account for sequence variation observed in sequence alignments of the above-

mentioned VP7 and VP4 genotypes. The primer sequences were checked for specificity 

using NCBI-Nucleotide blast (http://blast.ncbi.nlm.nih.gov/Blast.cgi) and were checked for 

self-annealing sites, hairpin loop formation and 3′ complementarity using the IDT 

oligonucleotide calculator (http://www.idtdna.com/analyzer/Applications/OligoAnalyzer/). 

For primers with melting temperatures (Tm) in the range of 30–40 °C, the Tm’s were 

increased to 45–50 °C, using AP-dC (G-clamp) base analogs as required (Glen Research, 

VA, USA). All primers were synthesized at the Biotechnology Core Facility, Centers for 

Disease Control and Prevention and purified by high-performance liquid chromatography 

(HPLC).

2.5. Screening, optimization, and validation of VP7 and VP4 genotyping assays

Multiple forward and reverse primer sets designed for VP7 genotypes (G1, G2, G3, G4, G9 

and G12) and VP4 genotypes (P[8], P[4], P[6], P[9] and P[10]) were screened using RVA 

cultured strains bearing the common VP7 and VP4 genotypes, as well as stool samples 

including G1P[8], G1P[6], G1P[4], G2P[4], G2P[6], G2P[8], G3P[8], G3P[6], G4P[8], 

G4P[4], G4P[6], G9P[8], G9P[4], G9P[6], G12P[8], G12P[6], G12P[4] and other genotypes 

in circulation. For both the VP7 and VP4 multiplexed conventional one-step RT-PCR assays, 

the primer sets with the best sensitivity and specificity for detecting the genotypes of each of 

the RVA cultured strains were selected for optimization. Primers for each genotype were 

also selected based on the predicted amplicon size generated, which in tend could be used to 

identify individual RVA genotypes. Selected VP7 and VP4 primer sets were optimized by 

performing each assay at several primer concentrations in the range of 0.5–6 μM. The primer 

concentrations showing amplification of its respective template without non-specific 

amplification or cross reactivity were selected for subsequent development. The optimized 

VP7 and VP4 multiplexed one-step RT-PCR genotyping assays were then validated using 

reference laboratory strains and clinical samples. The sequences, nucleotide positions and 

expected amplicon sizes of the selected forward and reverse primers for both VP7 and VP4 

assays are shown in Table 1.

Esona et al. Page 5

J Virol Methods. Author manuscript; available in PMC 2018 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.idtdna.com/analyzer/Applications/OligoAnalyzer/


2.6. VP7 and VP4 multiplexed one-step RT-PCR genotyping assays

A conventional multiplexed one-step RT-PCR was performed on purified RNA using the 

one-step RT-PCR kit (QIAGEN, Inc., Valencia, CA) as per the manufacturer’s 

recommendations with slight modification. In brief, the final reaction volume was changed 

from 50 μl to 30 μl while keeping the concentrations of the other reagent within the 

recommended range. For the VP7 multiplexed reaction, a single universal forward primer 

whose sequence is conserved among the VP7 genes of genotypes G1, G2, G3, G4, G9 and 

G12 and a cocktail of six reverse amplification primers specific and complementary to 

variable regions of the VP7 genes of the same genotypes were used. The forward primer was 

used at a final molarity of 6 μM, while the genotype-specific primers were used at a final 

molarity of 1 μM each. For the VP4 assay, a single forward primer at final molarity of 5 μM 

and a cocktail of five reverse amplification primers specific and corresponding to variable 

regions of genotypes P[4], P[6], P[8], P[9], and P[10] at final molarity of 1 μM each was 

used. After denaturation of the RNA at 97 °C for 5 min on a GeneAmp PCR System 9700 

thermal cycler (Applied Biosystems, Inc., Foster City, CA), the reactions were incubated on 

ice until reverse transcription. RT and amplification was performed using the following 

parameters: 50 °C for 30 min; 95 °C for 15 min then 94 °C for 45 s, 50 °C for 45 s, and 

72 °C for 1 min, repeated for a total of 25–35 cycles (depending on the EIA OD value of the 

sample); 72 °C for 7 min; and then 4 °C hold. RT-PCR genotyping product was 

electrophoresed on 3% agarose gels containing GelRed (Biotium, Heyward, CA, USA) for 2 

h at 100 V and products were detected under UV transillumination or were analyzed on the 

LabChip® GX instrument (Caliper Life Sciences, MA, USA) using a HT DNA 1K reagent 

kit (Dual protocol DNA Analysis and Quantitation) with the HT DNA Extended Range 

LabChip (Caliper Life Sciences, MA, USA).

2.7. Determination of limit of detection (LOD) of the VP7 and VP4 conventional multiplexed 
one-step RT-PCR genotyping assays

The LODs for the VP7 and VP4 genotyping assays were determined using stool samples 

with known G and P genotypes (G1P[8], G2P[4], G3P[8], G4P[6], G9P[8] and G12P[8]) 

and high viral antigen concentration (OD values ranging from 2.5 to 3.0). For VP4 

genotypes P[9] and P[10], laboratory culture strains AU-1 (G3P[9]) and 69M (G8P[10]) 

were used. These samples were serially diluted 10−1 to 10−9 in a RVA-negative stool 

suspension and then re-tested by Premier™ Rotaclone® EIA (Meridian Bioscience, Inc., 

Cincinnati, OH, USA). RNA was extracted and tested by NSP3 qRT-PCR (Mijatovic-

Rustempasic et al., 2013) and the new VP7 and VP4 multiplexed one-step RT-PCR 

genotyping assays.

2.8. qRT-PCR assay

In order to establish the LODs, 10-fold dilution of the NSP3 dsRNA transcript positive 

control (10−4 to 10−12) were prepared in DEPC-treated water containing 100 ng/μl yeast 

carrier RNA (Ambion, Austin, TX) and tested by NSP3 qRT-PCR assay as described 

previously (Mijatovic-Rustempasic et al., 2013). A standard curve was generated by plotting 

the log of copy numbers against cycle threshold (Ct) value and copy numbers calculated as 

described previously (Mijatovic-Rustempasic et al., 2013). It has been reported that each 
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RVA virion contains equimolar amounts of each of the 11 segments (McDonald and Patton, 

2011; Patton, 1990), hence the copy numbers of NSP3 gene per reaction obtained were 

assumed to be equivalent to that of the VP7 and VP4 genes. To determine the LODs for the 

diluted stool samples, a dsRNA transcript dilution served as a standard in each assay. Each 

template and non-template control (NTC) was tested in duplicate. The average Ct value for 

each reaction was determined and copy numbers were calculated as previously described 

(Mijatovic-Rustempasic et al., 2013).

2.9. Evaluation of alternative RT-PCR kits

The RNA extracts from each diluted sample were tested by the new G and P one-step RT-

PCR assays using three commercially available one-step RT-PCR kits according to 

manufacturer’s instruction with slight modification. In brief, the final reaction volume was 

changed from 50 μl to 30 μl while keeping the concentrations of the other reagent within the 

recommended range. These kits include Qiagen one-step RT-PCR kit (Qiagen, Germantown, 

MD, USA), MyTaq™ one-step RT-PCR kit (Bioline, Taunton, MA, USA) and SuperScript® 

III one-step RT-PCR System with Platinum® Taq High Fidelity DNA Polymerase (Life 

Technologies, Grand Island, NY, USA). All diluted stool samples were tested using the new 

VP7 and VP4 one-step RT-PCR assays as described above. The primer concentrations and 

the cycling conditions were the same for all three commercial kits. The VP7 (G) and VP4 

(P) RT-PCR amplicons were analyzed by electrophoresis of the amplified products in 3% 

agarose gels containing GelRed (Biotium, Heyward, CA, USA) and products were detected 

under UV transillumination. The LODs were determined as the lowest level of stool dilution 

that yielded an amplification product and a correct genotype determination.

2.10. Assay performance calculations

The sensitivity, specificity, positive predictive value (PPV), and negative predictive value 

(NPV) for each assay were calculated using standard procedures.

3. Results

3.1. Limit of detection (LOD)

Prior to extraction of these diluted samples, EIA results show that all the OD values were 

below the cut-off OD value of 0.150 and thus below the sensitivity limits of 5.0 × 105 

particles/ml as reported in the kit instructions.

Extracts from serially diluted stool samples were analyzed for the presence of the template 

using the new G and P conventional multiplexed one-step RT-PCR genotyping assays and 

the NSP3 qRT-PCR assay (Mijatovic-Rustempasic et al., 2013). For the conventional RT-

PCR assays, analysis by gel electrophoresis revealed a single, genotype-specific amplicon of 

the expected size for all RVA samples (data not shown). For the VP7 genotyping assay, the 

first 6 out of 9 dilutions had amplifiable template for genotypes G2, G3, G4, and G12 and 

the LODs were 8.6 × 102, 8.6 × 102, 5 × 102 and 8.6 × 101 copies of NSP3 RNA per 

reaction, respectively (Table 2). Genotypes G1 and G9 had amplifiable template in the first 5 

out of 9 dilutions corresponding to a LODs of 3.8 × 102 and 2.2 × 102 copies of NSP3 RNA 

per reaction, respectively (Table 2). Interestingly, the VP7 assay was able to detect a 
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genotype G1 (LOD = 5.2 × 101 copies of NSP3 RNA per reaction) in a single sample 

previously reported as having a genotype G9 only. For the VP4 assay, the first 6 out of 9 

dilutions had amplifiable template for genotypes P[4], P[6] and P[10] and with LOD of 8.6 × 

102, 8.6 × 102 and ≤1 copies of NSP3 RNA per reaction, while genotypes P[8] and P[9] had 

amplicon in 5 (LOD = 3.8 × 102 copies of NSP3 RNA per reaction) and 4 (LOD = 8.2 × 102 

copies of NSP3 RNA per reaction) out of 9 dilutions, respectively (Table 2). The three 

commercial one-step RT-PCR kits, Qiagen one-step RT-PCR kit (Qiagen), MyTaq™ one-

step RT-PCR kit (Bioline) and SuperScript® III one-step RT-PCR System with Platinum® 

Taq High Fidelity DNA Polymerase (Life Technologies) produced equivalent results.

3.2. Testing of reference virus strains using the VP7 and VP4 conventional multiplexed 
one-step RT-PCR genotyping assays

To evaluate these 2 genotyping assays, we assembled a panel of 17 characterized reference 

RVA strains carrying the most common VP7 and VP4 genotypes (see strain list in Section 

2). Analysis of these reference laboratory strains was carried out by multiplexed one-step 

RT-PCR amplifications. For the VP7 assay, use of a single universal forward (designated as 

VP7uF) and genotype-specific reverse primers for G1, G2, G3, G4, G9 and G12 (designated 

as G1-R4, G2-R4, G3-R1, G4-R2, G9-R2 and G12-R2) yielded visible dsDNA products of 

the predicted sizes for all 14 of the target strains tested and did not detect any of the non-

target (G5, G6, G8) strains (Fig. 1A). Also, for VP4, use of a single universal forward 

(designated as VP4uF) and genotype-specific reverse primers for P[8], P[4], P[6], P[9] and 

P[10] (designated as P[8]-R2, P[4]-R5, P[6]-R2, P[9]-4T-1 and P[10]-5T-1) yielded visible 

dsDNA products of the predicted sizes for 11 of the target strains tested and did not detect 

any of the non-target (P[2], P[3], P[5], P[11]) strains (Fig. 1B). For the VP7 assay, the 

absence of a product band for strains OSU, WC3 and 69M, (Fig. 1A, lanes 16, 17 and 18) 

was due to the fact that G5, G6 and G8 specific primers were not included in this assay and 

for the VP4 assay, the absence of product bands in lanes 12–17 of Fig. 1B was because 

primers specific for these VP4 genotypes were not included in this assay.

3.3. Clinical samples

A summary of the results obtained from the 725 clinical samples with both the VP7 and VP4 

conventional multiplexed one-step RT-PCR genotyping assays is presented in Table 3. For 

the VP7 assay, a total of 711 (98.1%) of the clinical samples could be genotyped and in 14 

(1.9%) of the samples a genotype could not be assigned. Further investigation revealed that 

13 of these 14 samples initially genotyped as G1 (n = 1), G2 (n = 5), G3 (n = 5), and G9 (n = 

1) and not sequence confirmed, had negative EIA OD values in the range of 0.044–0.046. 

One of the samples was EIA positive but RNA was completely degraded as determined by 

polyacrylamide gel electrophoretic (PAGE) RNA analysis. The G4 (n = 24) and mixed (n = 

13) samples used in this assay were all identified. For the VP4 assay, a total of 714 (98.5%) 

samples were genotyped, while 11 (1.5%) samples that were previously genotyped as P[4] 

(n = 5), P[8] (n = 3) and P[6] (n = 3) could not be genotyped. These 11 samples had negative 

EIA values in the range of 0.044–0.046 and were in the same group of negative EIA samples 

mentioned above. Also, the P[9] (n = 2) and P[10] (n = 2) samples, as well as the mixed P 

types (n = 10) subjected to this assay were all correctly identified. For VP7, the mixed 

genotypes were mostly G2/G12, G4/G12, G1/G9, G2/G3, G1/G3/G4 (RotaTeq vaccinee 
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stool), G2/G3, and G1/G3/G4 (RotaTeq vaccine components), while P[4]/P[8] and P[6]/P[8] 

were the most common mixed VP4 genotypes seen (Fig. 1C). When RNAs extracted from 

the RotaTeq and Rotarix vaccines and from RotaTeq vaccinees were tested using the VP7 

and VP4 assays, mixed genotypes G1/G3/G4 were detected from both RotaTeq extracts and 

a G1 was detected in Rotarix extract. The VP4 assay was able to detected the P[8] genotype 

from all three extracts. However, irrespective of targeted G and P genotypes, the VP7 and 

VP4 assays exhibited 94–100% sensitivity and 99–100% specificity with a PPV of 100% 

and NPV of 99.1–100% (Table 3).

4. Discussion

RT-PCR has been considered the method of choice for genotyping of RVA and thereby, 

regarded as the gold standard (Fischer and Gentsch, 2004). For this purpose, in 1990, the 

multiplexed hemi-nested RT-PCR based G genotyping assay was developed by Gouvea et al. 

(1990) and later other sets of G genotyping primers were published by other researchers 

(Das et al., 1994; Gouvea et al., 1990; Iturriza-Gomara et al., 2004). In 1992, the 

complimentary P genotyping multiplexed hemi-nested RT-PCR based assay was developed 

by Gentsch et al. (1992), and in 2009 Simmonds et al. established an alternative set of VP4 

consensus primers (VP4F/VP4R) (Simmonds et al., 2008) for typing the P genotypes missed 

with the previously described Con3/Con2 consensus primers (Gentsch et al., 1992). These 

genotyping assays, some of which are more than 20 years old, have generated enormous 

amounts of useful epidemiological data which has highlighted RVA genetic diversity on a 

global level (Bányai et al., 2012; Gentsch et al., 2005; Matthijnssens et al., 2009; Seheri et 

al., 2014). Consequently, expanding genetic diversity, and genetic drift with the 

accumulation of point mutations at primer binding sites, have all been observed and linked 

to mistyping or failure of genotype-specific primers to correctly identify strains (Banyai et 

al., 2005; Cunliffe et al., 2001; Esona et al., 2010b; Mitui et al., 2012; Rahman et al., 2005; 

Solberg et al., 2009). Ongoing failures of these decade-old assays to correctly characterize 

RVA strains have contributed to an estimated 10–30% of strains being classified as non-

typeable, a definite hindrance to RVA research, worldwide (Esona et al., 2010a; Gentsch et 

al., 2005). With rapid changes in the epidemiology of RVA, and the emergence of genotypes 

G9 and G12 in many parts of the world (Banyai et al., 2012; Esona et al., 2013; Iturriza-

Gomara et al., 2011; Seheri et al., 2014), it is imperative to be able to efficiently determine 

the VP7 and VP4 genotypes of RVA strains in clinical samples collected in the pre- and 

post-vaccine introduction eras. Vaccine effectiveness must be accessed against common VP7 

and VP4 genotypes components of the vaccines, as well as those not included, and this is 

dependent on the accuracy and sensitivity of typing methods for RVA strains. To maintain 

the sensitivity, specificity and accuracy, primers used in these RT-PCR-based typing methods 

must be regularly revised and updated (Fischer and Gentsch, 2004; Iturriza-Gomara et al., 

2004; Masendycz et al., 1997; Simmonds et al., 2008). To accomplish this, we have 

developed and extensively validated RVA, VP7 and VP4 multiplexed genotyping one-step 

RT-PCR assays to identify the common six G- (G1–G4, G9 and G12) and five P- (P[4], P[6], 

P[8], P[9] and P[10]) genotypes. A noted advantage of these newly developed methods is 

that a G12 specific primer has been incorporated in the VP7 assay. Primer specific for G12 

genotypes have been described by various investigators for confirmation of the G12 
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genotypes, however, the reaction has been done in separate reaction tube (Banerjee et al., 

2007; Samajdar et al., 2006).

Validation performed in this study has shown that these newly designed VP7 and VP4 

multiplexed one-step genotyping RT-PCR assays will consistently detect and correctly 

characterize the common six VP7 genotypes (G1–G4, G9 and G12) and five P genotypes 

(P[4], P[6], P[8], P[9], and P[10]), whether in culture supernatants, clinical stool samples or 

in vaccine stocks (with the exception of the G2 component of the RotaTeq vaccine stock).

We have demonstrated that the sensitivity of these novel VP7 and VP4 one-step genotyping 

RT-PCR assays depends on the VP7 and VP4 genotypes. Any significant sequence variation 

of the RVA genome of each genotype overtime will result in decreased sensitivity of these 

assays. The LOD varied for each VP7 G- and VP4 P-genotypes but irrespective of the assay 

or genotype, the LOD was found to be below the LOD of the EIA assay detection. This 

indicates that both VP7 and VP4 one-step genotyping RT-PCR assays are more sensitive 

than EIA assay and will improve the diagnosis of RVA in clinical samples if used 

simultaneously with EIA for screening and genotyping of rotavirus. Though the number of 

each segment of RVA per virion is not known, previous studies have shown that each RVA 

virion contains probable equimolar ratio of each of the 11 segments (McDonald and Patton, 

2011; Patton, 1990). Therefore, the improved VP7 and VP4 genotyping assays developed in 

this study has an LOD in the range of 8.6 × 101 to 8.6 × 102 copies of NSP3 or VP7 and ≤1 

to 8.2 × 102 copies of NSP3 orVP4 RNA per reaction, respectively.

The described VP7 and VP4 typing assays have been shown to consistently and correctly 

genotype RVA strains belonging in published lineages and sub-lineages of the six common 

G- and five common P-genotypes (Esona et al., 2013; Esteban et al., 2010; Le et al., 2011; 

Magagula et al., 2014; Martella et al., 2011; Mascarenhas et al., 2010; Nyaga et al., 2014; 

Stupka et al., 2009, 2012). The advantages of these two gel-based multiplexed one-step 

genotyping RT-PCR protocols are: (1) they do not require specialized equipment; (2) 

laboratory personnel need only basic skills to follow the protocols; (3) improved 

differentiation of samples with mixed genotypes; (4) this approach involves less handling of 

samples, is less labor-intensive, and less prone to sample cross-contamination; and (5) other 

commercially available one-step RT-PCR kits such as the MyTaq™ one-step RT-PCR kit 

(Bioline) and the SuperScript® III one-step RT-PCR System with Platinum® Taq High 

Fidelity DNA Polymerase (Life Technologies) can be used in place of the Qiagen one-step 

RT-PCR kit (Qiagen).

Though these two type-specific one-step genotyping RT-PCR primers were designed to 

generate highly specific amplification of the common six G- and five P-genotypes, they have 

a few limitations. First, the assays does not test for some rarer genotypes like G6, G8, G10, 

P[5], P[14]. Second, they do not contain a 3′ consensus primer which can be used to 

generate amplicons for sequencing in cases when the genotyping assay fails. In case of 

failure, previously published 5′ and 3′ consensus primer sets (Das et al., 1994; Gentsch et 

al., 1992; Gouvea et al., 1990) can be used to generate amplicon for sequencing.
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Here we report two highly robust, accurate, efficient, and documentable gel-based multiplex 

genotyping systems. These assays are capable of genotyping 97.8% of the six common VP7 

and 98.3% of the five common VP4 genotypes of RVA strains which are responsible for 

approximately 88.2% of all RVA infections (Banyai et al., 2012). Additionally they will 

replace the age-old two step hemi-nested VP7 (Das et al., 1994; Gouvea et al., 1990) and 

VP4 (Gentsch et al., 1992) genotyping RT-PCR assays which have been linked to 

genotyping failure in ≥30% of RVA positive samples worldwide (Gentsch et al., 2005) and 

are more prone to sample cross-contamination.

Although there are more sophisticated molecular techniques such as Surface Enhanced 

Raman Spectroscopy (Driskell et al., 2010) and various types of high-throughput next 

generation sequencing (Jere et al., 2011) for detection and characterization of rotavirus from 

stool samples, the cost associated with these methods is high and demands the expertise of 

specialized personnel. In conclusion, these novel G and P assays are simpler, less complex, 

faster and require less experienced personnel to perform. We believe that they will be useful 

for RVA characterization in studies worldwide for the foreseeable future.
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Fig. 1. 
(A and B) Multiplexed one-step RT-PCR genotyping of RVA strains using the VP7 and VP4 

gene segments. RVA dsRNA was extracted from cell lysates of reference virus strains and 4 

μl of the eluate was analyzed. (A) G genotyping. Lanes: MWT, molecular weight markers 

(Tracklt™ 100 bp DNA ladder; Invitrogen, NY, USA), lanes 1 and 20; marker molecular 

sizes are indicated on the left in base pairs); 2–18, products amplified from dsRNA of 

human and animal RVA strains possessing genotypes G1 (lane 2, strain Wa), G2 (lane 3, 

strain DS-1), G2 (lane 4, strain 1076), G3 (lane 5, strain P), G3 (lane 6, strain AU-1), G3 
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(lane 7, strain RRV), G3 (lane 8, strain SA11), G3 (lane 9, strain CC425), G3 (lane 10, strain 

RO1845), G4 (lane 11, strain ST-3), G9 (lane 12, strain 116E), G9 (lane 13, strain WI61), 

G9 (lane 14, strain US1205), G12 (lane 15, strain L26), G5 (lane 16, strain OSU), G6 (lane 

17, strain WC3), G8 (lane 18, strain 69M), and (lane 19, negative control). (B) P genotyping. 

Lanes: MWT, molecular weight markers (TrackIt™ 100 bp DNA ladder, lanes 1 and 19), 2–

16, products amplified from dsRNA of human and animal RVA strains possessing genotypes 

P[4] (lane 2, strain DS-1), P[4] (lane 3, strain L26), P[6] (lane 4, strain ST-3), P[6] (lane 5, 

strain US1205), P[8] (lane 6, strain Wa), P[8] (lane 7, strain P), P[8] (lane 8, strain WI61), 

P[9] (lane 9, strain AU-1), P[9] (lane 10, strain CC425), P[10] (lane 11, strain 69M), P[2] 

(lane 12, strain SA11), P[3] (lane 13, strain RRV), P[3] (lane 14, strain RO1845), P[5] (lane 

15, strain WC3), P[7] (lane 16, strain OSU), P[11] (lane 16, strain 116E), and (lane 17, 

negative control). (C) Mixed G and P genotyping. Lanes: MWT, molecular weight markers 

(TrackIt™ 100 bp DNA ladder, lanes 1, 11, 13 and 19), 2–8, products amplified from RVA 

strains in stool possessing mixed G genotypes G2/G12 (lane 2), G4/G12 (lane 3), G1/G9 

(lane 4), G1/G3/G4 (lane 5), G2/G3 (lane 6), G1/G3/G4** (lane 7, mixed genotypes from 

RotaTeq vaccinee stool), G1/G3/G4*** (lane 8, mixed genotypes from RotaTeq vaccine), 

G1* (lane 9, strain from Rotarix vaccine), negative control (lane 10) and for mixed P 

genotypes, P[4]/P[8] (lane 14), P[6]/P[8] (lane 14), P[8]**** (lane 15, strain from RotaTeq 

vaccine), P[8]* (lane 16, strain from Rotarix vaccine), and negative control (lane 17).

Esona et al. Page 18

J Virol Methods. Author manuscript; available in PMC 2018 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Esona et al. Page 19

Ta
b

le
 1

Pr
im

er
s 

us
ed

 f
or

 G
 a

nd
 P

 g
en

ot
yp

in
g 

as
sa

ys
.

P
ri

m
er

Se
qu

en
ce

 (
5′

-3
′)

P
ol

ar
it

y
G

en
e

G
en

ot
yp

e
N

uc
le

ot
id

e 
po

si
ti

on
 s

tr
an

d
A

pp
ro

xi
m

at
e 

am
pl

ic
on

 s
iz

e,
 b

p
R

ef
er

en
ce

V
P7

uF
G

G
C

 T
T

T
 A

A
A

 A
R

M
 G

A
G

 A
A

T
 T

T
C

 C
G

+
V

P7
G

en
er

ic
   

 1
–2

3
T

hi
s 

st
ud

y

G
1-

R
4

A
C

A
 T

TA
 G

A
R

 C
C

A
 C

C
A

 A
C

T
 T

G
T

 A
T

−
V

P7
G

1
85

0–
82

8
84

9
T

hi
s 

st
ud

y

G
2-

R
4

C
A

T
 T

A
T

 A
A

T
 C

A
C

 A
A

T
 A

C
A

 G
T

T
 G

−
V

P7
G

2
46

3–
44

2
46

2
T

hi
s 

st
ud

y

G
3-

R
1

C
G

T
 C

A
G

 T
A

A
 T

Y
A

 C
TA

 R
T

T
 T

Y
T

 C
A

G
 C

T
G

−
V

P7
G

3
73

3–
70

7
73

2
T

hi
s 

st
ud

y

G
4-

R
2

A
TA

 G
W

G
 T

A
T

 {
C

} 
T

T
 T

C
C

 A
T

T
 C

A
K

 T
G

T
 C

−
V

P7
G

4
35

8–
33

7
35

7
T

hi
s 

st
ud

y

G
9-

R
2

G
G

T
 G

A
T

 A
C

A
 A

T
R

 A
C

A
 A

TA
 A

G
T

 A
A

A
 A

G
−

V
P7

G
9

18
5–

16
0

18
4

T
hi

s 
st

ud
y

G
12

-R
2

G
A

A
 G

T
C

 A
TA

 A
A

A
 Y

T
Y

 T
C

T
 T

G
T

 T
G

−
V

P7
G

12
28

4–
26

2
28

3
T

hi
s 

st
ud

y

V
P4

uF
T

G
G

 Y
T

T
 C

V
C

 T
C

A
 T

T
T

 A
TA

 G
A

C
 A

+
V

P4
G

en
er

ic
   

 1
1–

32
T

hi
s 

st
ud

y

P[
4]

-R
5

G
C

A
 T

Y
C

 C
TA

 C
A

A
 G

T
C

 T
A

T
 T

A
Y

 T
A

G
−

V
P4

P[
4]

50
8–

48
5

49
7

T
hi

s 
st

ud
y

P[
6]

-R
2

A
C

C
 A

T
C

 G
A

G
 T

A
C

 T
G

G
 Y

T
C

 T
A

T
 Y

G
T

 T
G

−
V

P4
P[

6]
21

0–
18

5
19

9
T

hi
s 

st
ud

y

P[
8]

-R
2

G
Y

G
 G

T
T

 C
A

A
 Y

A
G

 C
A

A
 C

K
A

 C
T

−
V

P4
P[

4]
P[

8]
35

0–
33

0
33

9
T

hi
s 

st
ud

y

P[
9]

-4
T-

1
T

G
A

 G
A

C
 A

T
G

 C
A

A
 T

T
G

 G
A

C
−

V
P4

P[
9]

40
2–

38
5

39
1

G
en

ts
ch

 e
t a

l. 
(1

99
2)

P[
10

]-
5T

-1
A

T
C

 A
TA

 G
T

T
 A

G
T

 A
G

T
 C

G
G

−
V

P4
P[

10
]

59
4–

57
5

58
3

G
en

ts
ch

 e
t a

l. 
(1

99
2)

F,
 f

or
w

ar
d;

 R
, r

ev
er

se
; V

P,
 s

tr
uc

tu
ra

l p
ro

te
in

; b
p,

 b
as

e 
pa

ir
; R

, A
 o

r 
G

; Y
, C

 o
r 

T;
 V

, A
, C

 o
r 

G
; N

, A
, C

, G
 o

r 
T;

 {
C

},
 A

P-
dC

 (
G

-c
la

m
p)

.

J Virol Methods. Author manuscript; available in PMC 2018 February 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Esona et al. Page 20

Table 2

LODs of the G and P genotyping assays.

Gene segment LOD EIA value LOD in copies of NSP3 RNA/reaction

VP7 genotypes

 G1 0.104* 3.8 × 102

 G2 0.126* 8.6 × 102

 G3 0.082* 8.6 × 102

 G4 0.067* 5 × 102

 G9 0.067* 2.2 × 102

 G12 0.054* 8.6 × 101

VP4 genotypes

 P[4] 0.126* 8.6 × 102

 P[6] 0.082* 8.6 × 102

 P[8] 0.104* 3.8 × 102

 P[9] 0.122* 8.2 × 102

 P[10] 0.081* ≤1

*
Below limit of EIA assay detection (0.15).
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